PHYSICAL REVIEW E VOLUME 56, NUMBER 6 DECEMBER 1997

Scaling of the durations of chaotic transients in windows of attracting periodicity
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As a bifurcation parameter is varied it is common for chaotic systems to display windows of wiklthin
which there is stable periodic behavior. In this paper we examine the dependence of the transieriftane
periodic window(i.e., the typical time an initial condition wanders around chactically before settling into
periodic behavioron the size of the periodic window .. We argue and numerically verify that for one-
dimensional maps with a quadratic extremum~1(A 1)*? and we find an asymptotic universal form for the
parameter dependence ofvithin individual high-period windows. For two-dimensional maps, we conjecture
that for small windows the scaling changes te~(A )92, whered is a fractal dimension associated with
a typical attractor for chaotic parameter values near the considered periodic windows.
[S1063-651X97)01412-9

PACS numbes): 05.45+b

I. INTRODUCTION Ref. [5], this ratio approaches 9/4 for typical high-period
windows.

Bifurcation diagrams, a pictorial way of displaying the  Despite the asymptotic attracting periodic behavior in the
dependence of trajectories of nonlinear dynamical systemwindows, a randomly picked initial condition can often be
on a system parameter, have been studied extengielts ~ seen to wander chaotically for some time before settling into
the system parameter is varied, one often observes a structu?griodic behavior. As a matter of fact, for any parameter
of chaotic parameter values and “windows of periodicity.” Value in a periodic window there will be a chaotic nonattract-
By a “window of periodicity” we mean an interval of sys- ing invariant fractal set supporting trajectories that never
tem parameter values for which an arbitrary initial condition/and on the periodic attractor. Therefore, if a randomly
will be attracted to a periodic orbi{Perhaps the most well- picked initial condition happens to lie close to this set, its
known example of this phenomenon is the period-three winoroit will follow the chaotic behavior on the chaotic set for a

-~ . while before being attracted to the periodic orbit. This has
dow of the logistic map.Typically, as the parameter value peen called transient chag$,2.6. The “transient time,”

varies, a window is initiated by a saddle-node bifuraction, a : o ;

hich a perioda attracting orbit is born. This orbit under- ;v the average time an orbit WI-" move around .cha.ot|ca'lly
w pef acting before exhibiting periodic behavior, will be studied in this
goes a period-doubling cascade as the system parameterjsnor |n particular, we will show that, for a one-dimensional
increased, becomes a smaipiece chaotic attractor, and fi-  chaotic map with a quadratic extremum, this transient time
nally the window terminates via a crigig]. Complementary  gcgles with the “size of the window,” the difference in pa-
to these periodic parameter values are the chaotic ones fegmeter value between the final crisis and the saddle-node
which two initial conditions that were arbitrarily close ini- pjfurcation. The reason for this scaling lies in the universal
tially exponentially diverge from each other and never settlestrycture of the windows.
into periodic behavior. It has been shown that for typical In Sec. Il we argue that the transient time scales with the
chaotic dynamical systems, the periodic windows are denssize of the window as
[3] and the set of chaotic parameter values has a strictly
positive measurg4]. E~A 2 (1)

Furthermore, it has been shown that the global structure T i

of these windows shows universal behavior in the sense that _ ) ) )
essential features are independent of the size of the windo¥/e numerically verify the scaling lad) in Sec. Il for the

or the particular dynamical system under consideration. Fofiuadratic map

example, if one compares the distance in parameter space X 11— X2 @
from the saddle node to the crisis to the distance from the K
saddle node to the first period doubling, then, according tQq for the cubic map

Xx—Xx3—3ux. 3

*Also at Department of Electrical Engineering and Institute for
Systems Research, University of Maryland, College Park, MD In Sec. IV we show that the variation of the transient time
20742. as the parameter varies within a window follows a universal
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2 ' (@) 1 the element of the stableinstable period-three orbit closest
s et to x=0. One can see that as soon as an itinerary falls in the
T*(z, 1) - interval [ —x,,%,], it will move monotonically towardx,
or > b under the application of the map(x, ) and will converge

e to that point asymptotically. Therefore, we call the interval
- [ —Xy,X,] theimmediate basin
-2 ‘ The universal structure of large-periodn windows as

-2 0 2 described before is a consequence of the universal behavior
of the n-times iterated map for a periadwindow near one
of its stable periodic points. More precisely, for general one-
dimensional maps with a quadratic extremum and for typical
largen windows it can be shown that under a proper linear
rescaling ofx and u the nth iterated map is well approxi-
mated by the canonical one-dimensional quadratic map

2
Uni1=vnt ViV, ©)

where to lowest ordep is a linear function ofu. For this
canonical form the original saddle-node bifurcation and the
x first period doubling occur at=0 andv=1, respectively.
We define aeduced Lyapunov numbéar a twice differ-
and .= 1.765, which is in the period-three windoti) Blowup of entiable one-dimensional map with a single quadratic maxi-

T3(x, ) near the critical poink=0 and definition of the immediate mum as fOHOW,S' LetS,,S,, ... Sy be the widths of the
basin[ —x, ,X,]. immediate basins near each of the points of the pemiod-

orbit, with S; including the critical point. Then we have that

time is approximately four times as large as the smallest one. L2
Therefore, one can scale transient times of different windows S=K$, @
and different maps to the universal curve by looking at cor- hereK is a constant. and
responding parameter values in the different windows, for’ '
example, the value halfway between the saddle node and the S..=\S ®)
crisis. A

In Sec. V- we consider window transient-time scaling foryhere); is the magnitude of the slope in the middle of the
two-dimensional maps. We find that the Jacobian determizppropriate interval. Defink by A" 1=X,\3- - -\,. Yorke
nant of the magi.e., the area contraction rateust be very et | [5] show then that the appropriate rescaling in the co-

small for thg one-dimensiona! scaling to hold. As this verygdinatex and parameter to get thenth iterated map in the
small value is exceeded, we find a crossover to another typganonical form(Eq. (6)] is

of scaling. In this latter regime we present a heuristic argu-

FIG. 1. (a) 3-times iterated maf3(x,u) for T(x,u)=pu—x>

ment for the conjecture that v~ (X—Xg)A"" L, 9)
1 _
—~AptTY? (4) v~(p— o\, (10
.

. . . ) ) _ where u is the saddle-node parameter value at one end of
whered is a fractal dimension associated with a typical cha-yo \vindow andx, is the perioda point closest to O for

otic attractor for chaotic parameter values near the perlod%:ﬂol In this canonical form the relevant coordinate length

windows under consideration. We compare our conjecturg,, parameter variation scales are of order one, so that

for two-dimensional maps with numerical results for the
Henon map in Sec. VI. SN2 DAy (12)

Il. THEORY FOR THE SCALING LAW Using the above, we estimate the average duration of a
chaotic transient to be of the order of the inverse of the size
of the largest immediate basi8;. This is motivated by
X—T(X, )= pu—X2. (5)  thinking of the dynamics under theth iterated map as hop-
ping around randomly in the intervdlu—u? 1] with a
Orbits in thex interval [T2(0,u), T(O,u)]=[pw— % x] re-  probability of getting “caught” in the immediate basin pro-
main in that interval for all time, and we are interested in theportional to its length,
attractors and nonattracting invariant sets in that interval. In
order to define more precisely what we mean by “settling 1 S 12
into periodic behavior,” consider Fig.(4), which shows the PR (12
third iterate of the map5) for u=1.765, which lies in a
period-three window. Now consider the blowup of the mapMore precisely, if we uniformly sprinkle a very large number
T3(x,u) nearx=0, shown in Fig. 1b). Let x(x,) denote  of points in the interval u— u?, 1] and we denote the num-

Consider the quadratic map
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ber of points that have not fallen in the immediate basin aftef> 2 fx€d point off™, which implies that, aju, the attractor

t iterates byN(t), thenN(t) will behave as collides with _the un_stable f|_xed point on the boundary and
destroys the immediate basin.

N(t) t Thus far, we have described how we numerically deter-

W~GX;< 7 (13  mine the window sized . Next we wish to determine the

transient timer at the superstable valye,. (In Sec. IV we

and this will be inversely proportional to the length of the diSCuss the variation of with x within a window) Based
largest basirs,. Equations(11) and (12) imply that upon the prediction for the size of the immediate bdsiq.
(11)], we look for an unstable fixed poink, within

2.0(Aw)Y? of the critical point and then determine the im-
;N(AM)UZ- (149 mediate basin dt—x,,x,]. Then we sprinkle a large number
of points (~10°) in the interval T?(0,1),T(0,x)] and com-
pute for each one of these the number of iterates it takes for
the orbit to first enter the immediate basin. Plotting the loga-

We now wish to numerically test E¢14). We first find a  fithm of the number of points that have not entered the im-
large number of periodic windows with sizes varying over Mmediate basin at time versust and fitting a straight line to
several orders of magnitudes. Our strategy is as follows. Ushe plotted data, we determinerlds the slope of this line,
ing Newton’s method, we find a value @f for which the according to Eq.(13). Figure 3 shows such a plot for
critical point is part of a periodt orbit (the orbit is then ©=1.999 64 that lies in a period-ten window. Figure 4

IIl. NUMERICAL VERIFICATION

superstablefor somen: shows results for the logarithm ofA¥ersus the logarithm of
A for 186 different windows with periodicity up to 12. The
T"(0,use) =0. (15 resulting graph seems to be very well fitted by a straight line

with slope 1/2 over seven decades, strongly confirming the
Then we look for a slightly smallep value ug,, for prediction(14).
which a saddle-node bifurcation occurs. At a saddle-node |n order to show that the scaling lai4) does not depend
bifurcation, the mapr"(x,y) has unit slope at its fixed  on the particular form of the map, but only on the generic
points, guadratic nature of the extremum, we also consider the cubic

map
Tn(X:Msn) =X,

J _
T (X, =1, (16) X T060p) =X 3ux. as

With our knowledge ofug, and uss we can make an initial -
guess for the value qgi at the crisisu. at which the window

ends. Based on the universal structure of high-period win- W(?/T)
dows, we haveu.=pus,t+9(uss— s Again applying 3
Newton’'s method, we can greatly refine this initial guess

using the crisis condition

2

8

Tzn(ouuc) = Tsn(ouuc)- (17) —ls ‘
—24 -12 0
To see why this is where the crisis occurs, consider Fig. 2, N (QM/)
which is T"(x,u) near the critical point. The attractor will
consist ofn different pieces near the original periadorbit. FIG. 4. Scaling of the decay timewith the size of the window

The boundaries of the attractor near the critical point are\ u for the quadratic maf(x, u) = u— X
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FIG. 5. Scaling of the decay timewith the size of the window
A for the cubic mapr(x, ) =x3—3xu.

Because of the symmetry of this map,—x,u) = —T(X,u)

we will have coexisting attracting periodic orbits: If
X1,X2, . .. Xy forms an attracting periodic orbit, then so
does—Xxq,— Xy, ...,—X,. Thus, to determine- we check
when randomly placed initial conditions first arrive at one of
the two symmetrically placed immediate basins. The compu-
tation of periodic windows and transient times is analogous

to the qu"?ldratic map. T_he resulting P'Ot is shown i,n Fig: 5. FIG. 6. Comparison between the prediction for the parameter
Here again, the graph is very well fitted by a straight IInedependence of transient time within a winddsolid curve and

with slope 1/2, as predicted by E(L4). measured valuedriangles for the quadratic map fofa) a period-
three window with sizeA u=~0.04 and(b) a period-ten window
IV. PREDICTION FOR VARIATION OF TRANSIENT with size A~ 1.58<10"°.

TIME WITHIN A SMALL WINDOW ) ] ]
As a function ofv, the fixed points of Eq(6) are at* (v)*?,

When constructing Figs. 4 and 5, we computed the tranwith — ()22 the stable one. This means that the basin will

sient time at the superstable parameter value. The underlyinge enclosed by the points=(»)“2 on the right and the
assumption is that this transient time is somehow typical fohegative solution of

all the transient times within the same window. We will ar-

gue here that this is indeed the case and that the variation of v+l p=p12 (21)

a normalized transient time with the variation ofreormal-

ized) parameter in a window is given by a universal function.
We use a normalized parametefor a window such that

s is zero at the saddle-node bifurcation and one at the cris

which is —1—»'2 on the left. Therefore, the size of the

_immediate basin is 4 212 If we divide by the size of the
'Basin at the superstable valwe= 1/4 and use Eq(12) for
how the transient time scales with the immediate basin size,
we obtain our universal result for the normalized decay time
as a function of the normalized parameser

M7 Msn

S .
Mc™ Msn

19

We then compute the transient timgg at the superstable 7(s) 2
parameter value and normalize other computed vah{ss Tes = 143512
with this one:7(s)/7ss. We then claim that for typical small

width windows 7(s)/ 755 approximately follows a universal _ . . .
curve and the agreement efs)/ .. with the universal curve This predicts that the transient times at the saddle node and
S it the crisis are exactly twice and half as long as at the

becomes better as the window becomes smaller or, equiv{;il bl | The | ) .
lently, as the period increases. This is again because univeptPerstable parameter value. The longest transient time
sality means that theith iterated map near an attracting within one wmdc_)w is four times Iarg_er_ tha_n the sho_rtest_.
periodn orbit can, under the proper rescaling, be brought in Numerical evidence for this prediction is shown in Figs.

the canonical form(6) for which we know the saddle node ?(a) antd. f{b)l- Fig?rg.ﬁ(‘ia) sth?ws tt.he nprn;;llized .trintsr,]ient
and crisis occur ab=0 and v»=9/4, respectively. For this imes (triangles at different locations in the period-three

" ; ; indow of the quadratic map near=1.75, superimposed
form, we can explicitly determine, as a function of the win L S o
stable and unstable periodic points and therefore the size M the predicition(22) (solid line). The data and prediction

the immediate basin near—0. Wore precisely, since the 808 S8C%, B TEC 28 S R predicton
saddle node and the crisis for E() occur atv=0 and P P

_ . increases if we look at higher-periddarrowej windows.
v=9/4, respecitively, we have, for E(f), This is illustrated for a period-ten window of the quadratic
map in Fig. §b). Again, this result holds for more general
5= v (20) maps, and we show in Fig. 7 the corresponding graph for a

' period-nine window of the cubic mai8).

(22

9/4
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FIG. 7. Comparison between the prediction for the parameter

dependence of transient time within a window and measured values (b)

for the cubic map for a period-nine window with sizu

~4.5x1078.

V. THEORY FOR TWO-DIMENSIONAL MAPS
Equation(14) was derived and numerically verified for

one-dimensional maps. In order to investigate what happens

for a two-dimensional invertible map we consider thenble

map,

(%,y)—(a—x*+by,x), (23
which contains the one-dimensional quadratic nf@pvhen (©)

we setb=0. We study the effect of perturbing the one-
dimensional case by using smallvalues.

Consider parameter valuesa,b) with 0<b<1, for bOlll’il)dlll'lg
which we have an attracting perioderbit [note that for Eq. parabola
(23) yn=Xn-1l,
chaotic
(Xl!xn)i(XZ!Xl)! LRCA !(Xnaxn—l): (24) attl‘aCtOI' —7

which lies in a periodic windowgy<a<a;,b), where the

saddle-node bifurcation and the crisis occuraata, and

a=a., respectively. We assume that foeb>0, a typical

periodn window is close to a corresponding perindwin-

dow of theb=0 map. We denote a periadwindow of the FIG 8. (_a) Attracting periodic poin_t a_nd cl_osest nonattracting
b=0 map bya,<a’'<a/,. We further assume that there are periodic pc.)lnt. forb.=0. .(b) $tab|e periodic point and clqsest un-
two periodn periodic orbits in theb+0 map window that stable peEodK_: point with its stable arr:d unstable manlzfold dor
are continuations of the two periodperiodic orbits in the :n%.x(i)ac_jzoﬂczgttractor bounded by the paraboiasa—y”+2b
b=0 window. Denote bya., the superstable value for the '

periodn attractor in théd=0 window and forag;we have a  stable manifolds of fixed points or periodic points on this
periodic orbit of theb=0 map parabola are determined by vertical lines const. This is
, , ., depicted in Fig. 8). Now consider Fig. &), which shows
(0X0),(x2,0), - - - (Xn Xp—1)- (29) the attracting pointX,,x;) in the periodic orbit, the closest

Also, denote the closest unstable periogeint for (x5,0) by unstgble periodt point (X.U ’y“).' an_d fts stable and unstable
(x'y') (so that in one dimension the immediate basin ismann‘old. Also drawn in this picture are the parabolas
ur 2u

C . : x=a—y2+2b andx=a—y2—2b. After one iterate of Eq.
formed by [—y,,y/]) and the corresponding point for (23), the squard —2,2]x[ —2,2] will be mapped between
(ass,b) by (x,,y,). If b is very small, we have that the

st~ \ . . X these two parabolas. Now consider a parameter va|yest
periodic orbit for @ss,b) is only a slight perturbation of the - g6y tharm,, for which there is a chaotic attractor that lies

periodic orbit for @550): between the parabolas of Fig(b8. We depict this attractor
schematically in Fig. &).

X1=0, X=X, - X=Xy (26) For values ofa in the periodic window, the forward iter-
and, similarly, ates _of points _in the _squalfe— 2,2]1X[—-2,2] _wiII exhibit
transient behavior similar to that of the chaotic attractor for a
X=X, Yo=Y (270 while before being attracted to the stable periodic orbit. Dur-

ing its transient behavior, as soon as an orbit falls to the right
For b=0 the entire squarg—2,2] X[ —2,2] will be pro-  of the stable manifold of the unstable poin,(y,), it will
jected after one iterate onto the parabalaa’—y?. The converge to the attracting periodic orbit. Therefore, we can
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the same as that of falling in the immediate basin in the
one-dimensional case.

We now wish to obtain the scaling ef * with A . for the
caseA u<b. That is, we desire an estimate of the probability
that a given iterate of the chaotic transient lands in the im-
mediate basin region shown in Fig(t®. As previously
shown, this region has a horizontal width of the ordeA@f.
Consider the attractor that exists befébat not too close tp
the beginning of the window. We estimate ! to scale as
the attractor measure contained within a region bounded by
the outer(rightmos} edge of the attractor and a stable mani-
fold segment horizontally displaced from the rightmost point
P on the attractor by the distanceu [see Fig. &)]. The
measure of this region can be estimated for small as
follows. The measure of a box of sidecontainingP scales
(b) as €Y for small e, whered denotes the pointwise dimension
of the attractor at the poir?. Now takee=A x and cover
the immediate basin region shown in FigcPwith boxes.
The quadratic nature of the tangency of the unstable mani-
fold with the stable manifold segment through the pdmt
implies that the vertical extent of the immediate basin region
in Fig. 9c) is of the order of A )2 The measure of an
box is (Au)? for e=Au, and we need of the order of
(Ap)Y% A= (Ar) Y2 boxes to cover the immediate basin
region. Thus the measure of the immediate basin region is of
the order of Au)?% (Ap) Y2=(Aw)9" Y2 Hence we ob-

(a)

boundin

parabola %/7

stable —— ,
manifold

tain
L —= 1 d—1/2
stable SN NNV ;N(A“) (28)
manifold
segments /P for Au<b.
chaotic VI. NUMERICAL COMPARISON FOR THE HE NON MAP
attractor . . .
/,/, To numerically test Eq(28) at differentb values, we first
>N~ N determine many windows and find the transient time at a
parameter value of one-ninth of the way through the window

- A = (analogous to superstable value bbr0). By constructing a
K In(1/7) versus InAw) graph, as in Figs. 4 and 5, we will infer
FIG. 9. (8) Windows for whichA u>b exhibit one-dimensional theTsIope anc.i compare that with the_ predlct(_ﬁB).
scaling behavior. (b) When Au<b the scaling becomes o determine windows, we sta_rt Wlt_h the windows 'ghat we
Ur~(Aw)® 2 (c) Construction for estimating the measure of the fou_nd for thgb:O case, as described in Sec. Ill. We find the
immediate basin. periodic orbit and then look fora,b+ 0) values with a pe-
riodic orbit close to the original one. We then repeat this step
consider the region to the right of this stable manifold and tofor largerb values starting with the periodic orbit at the
the left of the parabolx=a—y?+2b to be the immediate intermediateb value. In this way, we attempt to track the
basin. b=0 windows to larges values. In this way we are able to
The width of the attractor transverse to its striations is offind a large number of windows, with widths as small as
the order ofb (the absolute value of the Jacobian determi-10~°, up to b=10"2. A brute force method, checking for
nant of the map as is the separation between the two pa-periodicity on a lattice of points atb=0.3, is also applied
rabolas of Fig. 8). From Eqgs(26) and(27) and the form of  to find windows as small as 16.
the Haxon map(23), it can be seen that theandy coordi- To find transient times, consider the Jacobian madiX
nates of the stable and unstable orbits differ by numbers oft one of the points, on the stable period- orbit. This
the order ofS; andSl, respectively, wher&, is the length of  matrix has two eigenvalues that are smaller than one in ab-
the immediate basin in one dimensioh=0). Therefore, solute value and two eigenvectags ande, (which in gen-
depending on the relative size Sf (~Aun) andb (separa- eral are not orthogongal Within the linear approximation
tion of the parabolasone can have one of the two situations (i.e., for small enoughK), T" will map the ellipse
depicted in Figs. @) and 9b). In Fig. 9a), b is smaller than  x,+K[cos@)e, +sin(f)e,] for 0<6o<2m, within itself.
A u and therefore the probability of falling to the right of the There is a largest value df (denotedK,,) such that the
stable manifold of the unstable periodic point is essentiallyellipse nonlinearly maps to within itself. Choosikg<K,,
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FIG. 10. Dependence of the scaling law in two dimensions on ‘ b
the period. The plot of In(X) versus Inw) for windows of period O g wo( /)

17 (triangles appears to lie on a line parallel with the plot for ) )
windows of period 10diamonds. FIG. 11. Data for the scaling exponemtfor different values of

the Jacobian determinant. The two solid lines are predictions for the
gxponenta based on the Kaplan-Yorke prediction for the dimen-
sion with A =1.5 (lower line) and\ =2.0 (upper ling. The dashed

. P line gives the exponent for the one-dimensional scaling. The error
Alternatively, one can take a large number of initial con- 3 a2
.. . . ... . bars on the values fdo=10"*, 10 <, and 0.3 are larger because
ditions and determine how long it takes them to come within, . .
: . . ) fewer windows are obtained.
a distances of one of the points on the periadorbit. Then,
again by making a graph of[IN(t)] versust, we determine
the inverse of the slope of this graph to be. We expect
that as we decreasestarting at some initial valuer, will
continue to increase until the circle with radiagits into the
immediate basin. When continuing to decreasdurther

we consider the corresponding ellipse to be the immediat
basin and determine as in the one-dimensional case.

windows was not large enough to make a fit individually for

each period. For all six data points, only windows with

Au<Db/5 were used. Smallds-values (107 and 10 8) do

not give reliable results for the slope because so few win-
dows are found that the transition from fitting a slope with

from this value onwardy, will essentially remain constant " q ¢ hichA < b/5 t v retaining th ith
as the convergence toward the periodic point will happeﬁ’vIn ows Tor whichA 1= b/ 10 only retaining the ones wi
A p<b gives a large variation in the value of the slope.

extremely fast once inside the immediate basin. This is in- o R o -
y The two solid lines in Fig. 11 indicate the predictions for

deed what we observe numerically: Decreasingvill in- . ;
y v the value of the exponent as a functionbo&ccording to Eq.

creaser, up to some point where, levels off and remains 28). If timate th intwise di iohat P in Ei
approximately constant. This we call the transient tinsnd (28). Wwe estimate the pointwise dimensiahat = in F1g.
9(c) using the information dimension of the attractor, we can

compare it with ther obtained with the previously described e the Kaplan-Yorke formula to estimateLet h, >0 h,

method. For the parameter values we worked with, thi S the two L i the attractor. Si th
method and the ellipse method gave the same values for t € two Lyapunov exponents on the attractor. since the
acobian determinarit.e., —b) of our map is constant, we

transient times.

Another difference with the one-dimensional case is evi-h,ave thath; +h,=In(b). The Kaplan-Yorke formula then
dent from the plot in Fig. 10. This plot shows results foas yields
a function ofA u for windows forb=10"4, where period-17
windows are indicated with triangles and period-10 windows h; In(\)
with diamonds. There is a clear separation between the data d=1+ Tho ~ 1+ (v =In(b) (30
for the two periods. Evidently windows with a fixed period 2
seem to satisfy

0.70
1 o
;=C(AM)“, (29

but there is a dependence of the cons@nbn the period. 055

For the differenb values and periods that we looked @tjs
monotonically increasing as a function of the period.

Figure 11 shows a plot of the exponenversusb, where 0.40
a is obtained from the slope of straight lines fitted to plots ’
such as in Fig. 10. The error bars in Fig. 11 indicate the —10 —7/ —4
goodness of the fitted straight lines. For the three points to [Og (b/)
the left of the dotted lingat b=10"%, 1075, and 10%), 10
enough windows were found that we were able to determine £, 12, One-dimensional scaling regime for two-dimensional
a slope for six individual periods and then average. Howevermaps: windows that are larger in size than the Jacobian determi-
for the three points to the right of the dotted lifat nant. The solid lines represent the predictions for the scaling of
b=10"%, 10 2, and 0.3) the windows from four perio@s0,  windows larger than the Jacobian and the dashed line represents the
11, 12, and 1Bare taken together, and we fit a single line one-dimensional prediction. Especially for the smaller valuels, of
through these points. This was done because the number thfe scaling is like in the one-dimensional case, as expected.
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According to[7], typical values forx can be expected to dashed ling but the error bars for the largbervalues are too

be around 1.5\ <2.0 for smallb values. Therefore, in Fig. large for the measured values to be bounded away from the

11 the two solid lines represent predictions for the exponenprediction for theA u<b scaling(solid lines.

d—1/2, with an estimate fod obtained by using two ex-

treme values .of\=1_.5 and\=2.0 ?n Eqg.(30). Remember VIl. CONCLUSION

that for one-dimensional maps, this exponent would be 0.5.

For comparison, this ling=0.5 is also included in this fig- For one-dimensional maps, we derived a scaling law for
ure as a dashed line. the dependence of transient times in periodic windows on the

One can see that there is qualitative agreement of theize of those windows. Numerically, this law was shown to
prediction with the datdthe exponent is definitely different be satisfied quite accurately, independent of the specific form
from the one-dimensional case and is an increasing functioof the map. The same scaling law holds for two-dimensional
of b), but the agreement of the numerical values is not goodnaps only if the Jacobian determinant of the map is very
enough to definitely confirm the conjectu(28). Detailed small. We gave a heuristic argument for a scaling law that
agreement is also hard to expect because windows that ah®lds more generally and provided some numerical evidence
near chaotic attractors with different dimensions are all usedor the existence of these different scaling regimes in two
in the same graph to fit one slope. dimensions. Qualitative features of the conjecture for scaling

Finally, in Fig. 12 we show the results for the windows in two dimensions were confirmed by a numerical experi-
that satisfyA x> 5b for five differentb values(from 10 °to  ment.

10 %). Here again, for the points to the left of the dotted line,

four dlfferent pepods were avere_lged, wher_eas for the pqmts ACKNOWLEDGMENTS
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