
20742

PHYSICAL REVIEW E DECEMBER 1997VOLUME 56, NUMBER 6
Scaling of the durations of chaotic transients in windows of attracting periodicity
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Institute for Plasma Research and Department of Physics, University of Maryland, College Park, Maryland 20742

Brian R. Hunt†

Institute for Physical Science and Technology and Department of Mathematics, University of Maryland, College Park, Maryland
~Received 7 July 1997!

As a bifurcation parameterm is varied it is common for chaotic systems to display windows of widthDm in
which there is stable periodic behavior. In this paper we examine the dependence of the transient timet of a
periodic window~i.e., the typical time an initial condition wanders around chaotically before settling into
periodic behavior! on the size of the periodic windowDm. We argue and numerically verify that for one-
dimensional maps with a quadratic extremum 1/t;(Dm)1/2 and we find an asymptotic universal form for the
parameter dependence oft within individual high-period windows. For two-dimensional maps, we conjecture
that for small windows the scaling changes to 1/t;(Dm)d21/2, whered is a fractal dimension associated with
a typical attractor for chaotic parameter values near the considered periodic windows.
@S1063-651X~97!01412-8#
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I. INTRODUCTION

Bifurcation diagrams, a pictorial way of displaying th
dependence of trajectories of nonlinear dynamical syst
on a system parameter, have been studied extensively@1#. As
the system parameter is varied, one often observes a stru
of chaotic parameter values and ‘‘windows of periodicity
By a ‘‘window of periodicity’’ we mean an interval of sys
tem parameter values for which an arbitrary initial conditi
will be attracted to a periodic orbit.~Perhaps the most well
known example of this phenomenon is the period-three w
dow of the logistic map.! Typically, as the parameter valu
varies, a window is initiated by a saddle-node bifuraction
which a period-n attracting orbit is born. This orbit under
goes a period-doubling cascade as the system parame
increased, becomes a smalln-piece chaotic attractor, and fi
nally the window terminates via a crisis@2#. Complementary
to these periodic parameter values are the chaotic one
which two initial conditions that were arbitrarily close in
tially exponentially diverge from each other and never se
into periodic behavior. It has been shown that for typic
chaotic dynamical systems, the periodic windows are de
@3# and the set of chaotic parameter values has a str
positive measure@4#.

Furthermore, it has been shown that the global struc
of these windows shows universal behavior in the sense
essential features are independent of the size of the win
or the particular dynamical system under consideration.
example, if one compares the distance in parameter s
from the saddle node to the crisis to the distance from
saddle node to the first period doubling, then, according
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Ref. @5#, this ratio approaches 9/4 for typical high-perio
windows.

Despite the asymptotic attracting periodic behavior in
windows, a randomly picked initial condition can often b
seen to wander chaotically for some time before settling i
periodic behavior. As a matter of fact, for any parame
value in a periodic window there will be a chaotic nonattra
ing invariant fractal set supporting trajectories that ne
land on the periodic attractor. Therefore, if a random
picked initial condition happens to lie close to this set,
orbit will follow the chaotic behavior on the chaotic set for
while before being attracted to the periodic orbit. This h
been called transient chaos@1,2,6#. The ‘‘transient time,’’
i.e., the average time an orbit will move around chaotica
before exhibiting periodic behavior, will be studied in th
paper. In particular, we will show that, for a one-dimension
chaotic map with a quadratic extremum, this transient ti
scales with the ‘‘size of the window,’’ the difference in pa
rameter value between the final crisis and the saddle-n
bifurcation. The reason for this scaling lies in the univer
structure of the windows.

In Sec. II we argue that the transient time scales with
size of the window as

1

t
;Dm1/2. ~1!

We numerically verify the scaling law~1! in Sec. III for the
quadratic map

x→m2x2 ~2!

and for the cubic map

x→x323mx. ~3!

In Sec. IV we show that the variation of the transient tim
as the parameter varies within a window follows a univer
curve. In particular, for most windows, the largest transie

r
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56 6509SCALING OF THE DURATIONS OF CHAOTIC . . .
time is approximately four times as large as the smallest o
Therefore, one can scale transient times of different windo
and different maps to the universal curve by looking at c
responding parameter values in the different windows,
example, the value halfway between the saddle node and
crisis.

In Sec. V we consider window transient-time scaling f
two-dimensional maps. We find that the Jacobian deter
nant of the map~i.e., the area contraction rate! must be very
small for the one-dimensional scaling to hold. As this ve
small value is exceeded, we find a crossover to another
of scaling. In this latter regime we present a heuristic ar
ment for the conjecture that

1

t
;Dmd21/2, ~4!

whered is a fractal dimension associated with a typical ch
otic attractor for chaotic parameter values near the perio
windows under consideration. We compare our conject
for two-dimensional maps with numerical results for t
Hénon map in Sec. VI.

II. THEORY FOR THE SCALING LAW

Consider the quadratic map

x→T~x,m!5m2x2. ~5!

Orbits in thex interval @T2(0,m),T(0,m)#5@m2m2,m# re-
main in that interval for all time, and we are interested in t
attractors and nonattracting invariant sets in that interval
order to define more precisely what we mean by ‘‘settli
into periodic behavior,’’ consider Fig. 1~a!, which shows the
third iterate of the map~5! for m51.765, which lies in a
period-three window. Now consider the blowup of the m
T3(x,m) nearx50, shown in Fig. 1~b!. Let xs(xu) denote

FIG. 1. ~a! 3-times iterated mapT3(x,m) for T(x,m)5m2x2

andm51.765, which is in the period-three window.~b! Blowup of
T3(x,m) near the critical pointx50 and definition of the immediate
basin@2xu ,xu#.
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the element of the stable~unstable! period-three orbit closes
to x50. One can see that as soon as an itinerary falls in
interval @2xu ,xu#, it will move monotonically towardxs
under the application of the mapT3(x,m) and will converge
to that point asymptotically. Therefore, we call the interv
@2xu ,xu# the immediate basin.

The universal structure of large-n period-n windows as
described before is a consequence of the universal beha
of the n-times iterated map for a period-n window near one
of its stable periodic points. More precisely, for general on
dimensional maps with a quadratic extremum and for typi
largen windows it can be shown that under a proper line
rescaling ofx and m the nth iterated map is well approxi
mated by the canonical one-dimensional quadratic map

vn115vn1vn
22n, ~6!

where to lowest ordern is a linear function ofm. For this
canonical form the original saddle-node bifurcation and
first period doubling occur atn50 andn51, respectively.

We define areduced Lyapunov numberfor a twice differ-
entiable one-dimensional map with a single quadratic ma
mum as follows. LetS1 ,S2 , . . . ,Sn be the widths of the
immediate basins near each of the points of the perion
orbit, with S1 including the critical point. Then we have tha

S2>KS1
2 , ~7!

whereK is a constant, and

Si 11>l iSi , ~8!

wherel i is the magnitude of the slope in the middle of th
appropriate interval. Definel by ln215l2l3•••ln . Yorke
et al. @5# show then that the appropriate rescaling in the
ordinatex and parameterm to get thenth iterated map in the
canonical form@Eq. ~6!# is

v;~x2x0!ln21, ~9!

n;~m2m0!l2~n21!, ~10!

wherem0 is the saddle-node parameter value at one end
the window andx0 is the period-n point closest to 0 for
m5m0. In this canonical form the relevant coordinate leng
and parameter variation scales are of order one, so that

S1
2;l2~n21!;Dm. ~11!

Using the above, we estimate the average duration o
chaotic transientt to be of the order of the inverse of the siz
of the largest immediate basinS1. This is motivated by
thinking of the dynamics under thenth iterated map as hop
ping around randomly in the interval@m2m2,m# with a
probability of getting ‘‘caught’’ in the immediate basin pro
portional to its length,

1

t
;S1 . ~12!

More precisely, if we uniformly sprinkle a very large numb
of points in the interval@m2m2,m# and we denote the num
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6510 56JOERI JACOBS, EDWARD OTT, AND BRIAN R. HUNT
ber of points that have not fallen in the immediate basin a
t iterates byN(t), thenN(t) will behave as

N~ t !

N~0!
;expS 2

t

t D ~13!

and thist will be inversely proportional to the length of th
largest basinS1. Equations~11! and ~12! imply that

1

t
;~Dm!1/2. ~14!

III. NUMERICAL VERIFICATION

We now wish to numerically test Eq.~14!. We first find a
large number of periodic windows with sizes varying ov
several orders of magnitudes. Our strategy is as follows.
ing Newton’s method, we find a value ofm for which the
critical point is part of a period-n orbit ~the orbit is then
superstable! for somen:

Tn~0,mss!50. ~15!

Then we look for a slightly smallerm value msn , for
which a saddle-node bifurcation occurs. At a saddle-n
bifurcation, the mapTn(x,y) has unit slope at itsn fixed
points,

Tn~x,msn!5x,

]

]x
Tn~x,msn!51. ~16!

With our knowledge ofmsn andmss we can make an initia
guess for the value ofm at the crisismc at which the window
ends. Based on the universal structure of high-period w
dows, we havemc>msn19(mss2msn). Again applying
Newton’s method, we can greatly refine this initial gue
using the crisis condition

T2n~0,mc!5T3n~0,mc!. ~17!

To see why this is where the crisis occurs, consider Fig
which is Tn(x,m) near the critical point. The attractor wi
consist ofn different pieces near the original periodn orbit.
The boundaries of the attractor near the critical point

FIG. 2. Tn(x,m) near the crisis for a period-n window.
r
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Tn(0,m) andT2n(0,m). Condition~17! means thatT2n(0,mc)
is a fixed point ofTn, which implies that, atmc , the attractor
collides with the unstable fixed point on the boundary a
destroys the immediate basin.

Thus far, we have described how we numerically det
mine the window sizesDm. Next we wish to determine the
transient timet at the superstable valuemss. ~In Sec. IV we
discuss the variation oft with m within a window.! Based
upon the prediction for the size of the immediate basin@Eq.
~11!#, we look for an unstable fixed pointxu within
2.0(Dm)1/2 of the critical point and then determine the im
mediate basin at@2xu ,xu#. Then we sprinkle a large numbe
of points (;105) in the interval@T2(0,m),T(0,m)# and com-
pute for each one of these the number of iterates it takes
the orbit to first enter the immediate basin. Plotting the log
rithm of the number of points that have not entered the
mediate basin at timet versust and fitting a straight line to
the plotted data, we determine 1/t as the slope of this line
according to Eq.~13!. Figure 3 shows such a plot fo
m51.999 64 that lies in a period-ten window. Figure
shows results for the logarithm of 1/t versus the logarithm of
Dm for 186 different windows with periodicity up to 12. Th
resulting graph seems to be very well fitted by a straight l
with slope 1/2 over seven decades, strongly confirming
prediction~14!.

In order to show that the scaling law~14! does not depend
on the particular form of the map, but only on the gene
quadratic nature of the extremum, we also consider the cu
map

x→T~x,m!5x323mx. ~18!

FIG. 3. Exponential decay of the number of pointsN(t) that
have not fallen in the immediate basin aftert iterates.

FIG. 4. Scaling of the decay timet with the size of the window
Dm for the quadratic mapT(x,m)5m2x2.
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Because of the symmetry of this map,T(2x,m)52T(x,m)
we will have coexisting attracting periodic orbits:
x1 ,x2 , . . . ,xn forms an attracting periodic orbit, then s
does2x1 ,2x2 , . . . ,2xn . Thus, to determinet we check
when randomly placed initial conditions first arrive at one
the two symmetrically placed immediate basins. The com
tation of periodic windows and transient times is analogo
to the quadratic map. The resulting plot is shown in Fig.
Here again, the graph is very well fitted by a straight li
with slope 1/2, as predicted by Eq.~14!.

IV. PREDICTION FOR VARIATION OF TRANSIENT
TIME WITHIN A SMALL WINDOW

When constructing Figs. 4 and 5, we computed the tr
sient time at the superstable parameter value. The underl
assumption is that this transient time is somehow typical
all the transient times within the same window. We will a
gue here that this is indeed the case and that the variatio
a normalized transient time with the variation of a~normal-
ized! parameter in a window is given by a universal functio

We use a normalized parameters for a window such that
s is zero at the saddle-node bifurcation and one at the cr

s5
m2msn

mc2msn
. ~19!

We then compute the transient timetss at the superstable
parameter value and normalize other computed valuest(s)
with this one:t(s)/tss. We then claim that for typical smal
width windowst(s)/tss approximately follows a universa
curve and the agreement oft(s)/tss with the universal curve
becomes better as the window becomes smaller or, equ
lently, as the period increases. This is again because un
sality means that thenth iterated map near an attractin
period-n orbit can, under the proper rescaling, be brough
the canonical form~6! for which we know the saddle nod
and crisis occur atn50 andn59/4, respectively. For this
form, we can explicitly determine, as a function ofn, the
stable and unstable periodic points and therefore the siz
the immediate basin nearx50. More precisely, since the
saddle node and the crisis for Eq.~6! occur atn50 and
n59/4, respectively, we have, for Eq.~6!,

s5
n

9/4
. ~20!

FIG. 5. Scaling of the decay timet with the size of the window
Dm for the cubic mapT(x,m)5x323xm.
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As a function ofn, the fixed points of Eq.~6! are at6(n)1/2,
with 2(n)1/2 the stable one. This means that the basin w
be enclosed by the pointsv5(n)1/2 on the right and the
negative solution of

v1v22n5n1/2, ~21!

which is 212n1/2, on the left. Therefore, the size of th
immediate basin is 112n1/2. If we divide by the size of the
basin at the superstable valuen51/4 and use Eq.~12! for
how the transient time scales with the immediate basin s
we obtain our universal result for the normalized decay ti
as a function of the normalized parameters,

t~s!

tss
5

2

113s1/2
. ~22!

This predicts that the transient times at the saddle node
at the crisis are exactly twice and half as long as at
superstable parameter value. The longest transient
within one window is four times larger than the shortest.

Numerical evidence for this prediction is shown in Fig
6~a! and 6~b!. Figure 6~a! shows the normalized transien
times ~triangles! at different locations in the period-thre
window of the quadratic map nearm51.75, superimposed
on the predicition~22! ~solid line!. The data and prediction
roughly agree, but there is a significant deviation. Howev
the correspondence between the numerics and our predi
increases if we look at higher-period~narrower! windows.
This is illustrated for a period-ten window of the quadra
map in Fig. 6~b!. Again, this result holds for more gener
maps, and we show in Fig. 7 the corresponding graph fo
period-nine window of the cubic map~18!.

FIG. 6. Comparison between the prediction for the parame
dependence of transient time within a window~solid curve! and
measured values~triangles! for the quadratic map for~a! a period-
three window with sizeDm'0.04 and~b! a period-ten window
with sizeDm' 1.5831025.
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V. THEORY FOR TWO-DIMENSIONAL MAPS

Equation ~14! was derived and numerically verified fo
one-dimensional maps. In order to investigate what happ
for a two-dimensional invertible map we consider the He´non
map,

~x,y!→~a2x21by,x!, ~23!

which contains the one-dimensional quadratic map~5! when
we set b50. We study the effect of perturbing the on
dimensional case by using small-b values.

Consider parameter values (a,b) with 0,b!1, for
which we have an attracting period-n orbit @note that for Eq.
~23! yn5xn21#,

~x1 ,xn!,~x2 ,x1!, . . . ,~xn ,xn21!, ~24!

which lies in a periodic window (a0,a,ac ,b), where the
saddle-node bifurcation and the crisis occur ata5a0 and
a5ac , respectively. We assume that for 1@b.0, a typical
period-n window is close to a corresponding period-n win-
dow of theb50 map. We denote a period-n window of the
b50 map bya08,a8,ac8 . We further assume that there a
two period-n periodic orbits in thebÞ0 map window that
are continuations of the two period-n periodic orbits in the
b50 window. Denote byass8 the superstable value for th
period-n attractor in theb50 window and forass8 we have a
periodic orbit of theb50 map

~0,xn8!,~x28,0!, . . . ,~xn8 ,xn218 !. ~25!

Also, denote the closest unstable period-n point for (x28,0) by
(xu8 ,yu8) ~so that in one dimension the immediate basin
formed by @2yu8 ,yu8#) and the corresponding point fo
(ass,b) by (xu ,yu). If b is very small, we have that th
periodic orbit for (ass,b) is only a slight perturbation of the
periodic orbit for (ass8 ,0):

x1>0, x2>x28 , . . . , xn>xn8 ~26!

and, similarly,

xu>xu8 , yu>yu8 . ~27!

For b50 the entire square@22,2#3@22,2# will be pro-
jected after one iterate onto the parabolax5a82y2. The

FIG. 7. Comparison between the prediction for the param
dependence of transient time within a window and measured va
for the cubic map for a period-nine window with sizeDm
'4.531028.
ns

s

stable manifolds of fixed points or periodic points on th
parabola are determined by vertical linesx5const. This is
depicted in Fig. 8~a!. Now consider Fig. 8~b!, which shows
the attracting point (x2 ,x1) in the periodic orbit, the closes
unstable period-n point (xu ,yu), and its stable and unstabl
manifold. Also drawn in this picture are the parabol
x5a2y212b and x5a2y222b. After one iterate of Eq.
~23!, the square@22,2#3@22,2# will be mapped between
these two parabolas. Now consider a parameter valuea, just
smaller thana0, for which there is a chaotic attractor that lie
between the parabolas of Fig. 8~b!. We depict this attractor
schematically in Fig. 8~c!.

For values ofa in the periodic window, the forward iter
ates of points in the square@22,2#3@22,2# will exhibit
transient behavior similar to that of the chaotic attractor fo
while before being attracted to the stable periodic orbit. D
ing its transient behavior, as soon as an orbit falls to the ri
of the stable manifold of the unstable point (xu ,yu), it will
converge to the attracting periodic orbit. Therefore, we c

r
es

FIG. 8. ~a! Attracting periodic point and closest nonattractin
periodic point forb50. ~b! Stable periodic point and closest un
stable periodic point with its stable and unstable manifold forb
Þ0. ~c! Chaotic attractor bounded by the parabolasx5a2y212b
andx5a2y222b.
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56 6513SCALING OF THE DURATIONS OF CHAOTIC . . .
consider the region to the right of this stable manifold and
the left of the parabolax5a2y212b to be the immediate
basin.

The width of the attractor transverse to its striations is
the order ofb ~the absolute value of the Jacobian determ
nant of the map!, as is the separation between the two p
rabolas of Fig. 8~b!. From Eqs.~26! and~27! and the form of
the Hénon map~23!, it can be seen that thex andy coordi-
nates of the stable and unstable orbits differ by number
the order ofS1 andS1

2, respectively, whereS1 is the length of
the immediate basin in one dimension (b50). Therefore,
depending on the relative size ofS1

2 (;Dm) andb ~separa-
tion of the parabolas!, one can have one of the two situatio
depicted in Figs. 9~a! and 9~b!. In Fig. 9~a!, b is smaller than
Dm and therefore the probability of falling to the right of th
stable manifold of the unstable periodic point is essentia

FIG. 9. ~a! Windows for whichDm.b exhibit one-dimensiona
scaling behavior. ~b! When Dm,b the scaling becomes
1/t;(Dm)d21/2. ~c! Construction for estimating the measure of t
immediate basin.
o

f
-
-

of

y

the same as that of falling in the immediate basin in
one-dimensional case.

We now wish to obtain the scaling oft21 with Dm for the
caseDm,b. That is, we desire an estimate of the probabil
that a given iterate of the chaotic transient lands in the
mediate basin region shown in Fig. 9~b!. As previously
shown, this region has a horizontal width of the order ofDm.
Consider the attractor that exists before~but not too close to!
the beginning of the window. We estimatet21 to scale as
the attractor measure contained within a region bounded
the outer~rightmost! edge of the attractor and a stable ma
fold segment horizontally displaced from the rightmost po
P on the attractor by the distanceDm @see Fig. 9~c!#. The
measure of this region can be estimated for smallDm as
follows. The measure of a box of sidee containingP scales
ased for small e, whered denotes the pointwise dimensio
of the attractor at the pointP. Now takee5Dm and cover
the immediate basin region shown in Fig. 9~c! with boxes.
The quadratic nature of the tangency of the unstable m
fold with the stable manifold segment through the pointP
implies that the vertical extent of the immediate basin reg
in Fig. 9~c! is of the order of (Dm)1/2. The measure of ane
box is (Dm)d for e5Dm, and we need of the order o
(Dm)1/2/Dm5(Dm)21/2 boxes to cover the immediate bas
region. Thus the measure of the immediate basin region i
the order of (Dm)d3(Dm)21/25(Dm)d21/2. Hence we ob-
tain

1

t
;~Dm!d21/2 ~28!

for Dm,b.

VI. NUMERICAL COMPARISON FOR THE HE ´ NON MAP

To numerically test Eq.~28! at differentb values, we first
determine many windows and find the transient time a
parameter value of one-ninth of the way through the wind
~analogous to superstable value forb50). By constructing a
ln(1/t) versus ln(Dm) graph, as in Figs. 4 and 5, we will infe
the slope and compare that with the prediction~28!.

To determine windows, we start with the windows that w
found for theb50 case, as described in Sec. III. We find t
periodic orbit and then look for (a,bÞ0) values with a pe-
riodic orbit close to the original one. We then repeat this s
for larger-b values starting with the periodic orbit at th
intermediate-b value. In this way, we attempt to track th
b50 windows to large-b values. In this way we are able t
find a large number of windows, with widths as small
1029, up to b51022. A brute force method, checking fo
periodicity on a lattice ofa points atb50.3, is also applied
to find windows as small as 1026.

To find transient times, consider the Jacobian matrixDTn

at one of the pointsxp on the stable period-n orbit. This
matrix has two eigenvalues that are smaller than one in
solute value and two eigenvectorse1 ande2 ~which in gen-
eral are not orthogonal!. Within the linear approximation
~i.e., for small enoughK), Tn will map the ellipse
xp1K@cos(u)e11sin(u)e2# for 0<u,2p, within itself.
There is a largest value ofK ~denotedKm) such that the
ellipse nonlinearly maps to within itself. ChoosingK,Km ,
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we consider the corresponding ellipse to be the immed
basin and determinet as in the one-dimensional case.

Alternatively, one can take a large number of initial co
ditions and determine how long it takes them to come wit
a distancee of one of the points on the period-n orbit. Then,
again by making a graph of ln@N(t)# versust, we determine
the inverse of the slope of this graph to bete . We expect
that as we decreasee starting at some initial value,te will
continue to increase until the circle with radiuse fits into the
immediate basin. When continuing to decreasee further
from this value onward,te will essentially remain constan
as the convergence toward the periodic point will happ
extremely fast once inside the immediate basin. This is
deed what we observe numerically: Decreasinge will in-
creasete up to some point wherete levels off and remains
approximately constant. This we call the transient timet and
compare it with thet obtained with the previously describe
method. For the parameter values we worked with, t
method and the ellipse method gave the same values fo
transient times.

Another difference with the one-dimensional case is e
dent from the plot in Fig. 10. This plot shows results fort as
a function ofDm for windows forb51024, where period-17
windows are indicated with triangles and period-10 windo
with diamonds. There is a clear separation between the
for the two periods. Evidently windows with a fixed perio
seem to satisfy

1

t
5C~Dm!a, ~29!

but there is a dependence of the constantC on the period.
For the differentb values and periods that we looked at,C is
monotonically increasing as a function of the period.

Figure 11 shows a plot of the exponenta versusb, where
a is obtained from the slope of straight lines fitted to plo
such as in Fig. 10. The error bars in Fig. 11 indicate
goodness of the fitted straight lines. For the three point
the left of the dotted line~at b51026, 1025, and 1024),
enough windows were found that we were able to determ
a slope for six individual periods and then average. Howe
for the three points to the right of the dotted line~at
b51023, 1022, and 0.3) the windows from four periods~10,
11, 12, and 13! are taken together, and we fit a single lin
through these points. This was done because the numb

FIG. 10. Dependence of the scaling law in two dimensions
the period. The plot of ln(1/t) versus ln(Dm) for windows of period
17 ~triangles! appears to lie on a line parallel with the plot fo
windows of period 10~diamonds!.
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windows was not large enough to make a fit individually f
each period. For all six data points, only windows wi
Dm,b/5 were used. Smaller-b values (1027 and 1028) do
not give reliable results for the slope because so few w
dows are found that the transition from fitting a slope w
windows for whichDm,b/5 to only retaining the ones with
Dm,b gives a large variation in the value of the slope.

The two solid lines in Fig. 11 indicate the predictions f
the value of the exponent as a function ofb according to Eq.
~28!. If we estimate the pointwise dimensiond at P in Fig.
9~c! using the information dimension of the attractor, we c
use the Kaplan-Yorke formula to estimated. Let h1.0.h2
be the two Lyapunov exponents on the attractor. Since
Jacobian determinant~i.e., 2b) of our map is constant, we
have thath11h25 ln(b). The Kaplan-Yorke formula then
yields

d511
h1

uh2u
511

ln~l!

ln~l!2 ln~b!
. ~30!

FIG. 12. One-dimensional scaling regime for two-dimensio
maps: windows that are larger in size than the Jacobian dete
nant. The solid lines represent the predictions for the scaling
windows larger than the Jacobian and the dashed line represen
one-dimensional prediction. Especially for the smaller values ob,
the scaling is like in the one-dimensional case, as expected.

n

FIG. 11. Data for the scaling exponenta for different values of
the Jacobian determinant. The two solid lines are predictions for
exponenta based on the Kaplan-Yorke prediction for the dime
sion with l51.5 ~lower line! andl52.0 ~upper line!. The dashed
line gives the exponent for the one-dimensional scaling. The e
bars on the values forb51023, 1022, and 0.3 are larger becaus
fewer windows are obtained.
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According to@7#, typical values forl can be expected to
be around 1.5,l,2.0 for small-b values. Therefore, in Fig
11 the two solid lines represent predictions for the expon
d21/2, with an estimate ford obtained by using two ex
treme values ofl51.5 andl52.0 in Eq. ~30!. Remember
that for one-dimensional maps, this exponent would be
For comparison, this liney50.5 is also included in this fig-
ure as a dashed line.

One can see that there is qualitative agreement of
prediction with the data~the exponent is definitely differen
from the one-dimensional case and is an increasing func
of b), but the agreement of the numerical values is not go
enough to definitely confirm the conjecture~28!. Detailed
agreement is also hard to expect because windows tha
near chaotic attractors with different dimensions are all u
in the same graph to fit one slope.

Finally, in Fig. 12 we show the results for the window
that satisfyDm.5b for five differentb values~from 1029 to
1025). Here again, for the points to the left of the dotted lin
four different periods were averaged, whereas for the po
to the right of this line, just one fit was obtained by lumpin
all data for the different periods together~because not
enough windows were obtained per period for an individ
fit!. The best possible values all lie close to the predic
value of 0.5~the one-dimensional scaling, represented by
s

nt

5.

e

n
d

are
d

,
ts

l
d
e

dashed line!, but the error bars for the larger-b values are too
large for the measured values to be bounded away from
prediction for theDm!b scaling~solid lines!.

VII. CONCLUSION

For one-dimensional maps, we derived a scaling law
the dependence of transient times in periodic windows on
size of those windows. Numerically, this law was shown
be satisfied quite accurately, independent of the specific f
of the map. The same scaling law holds for two-dimensio
maps only if the Jacobian determinant of the map is v
small. We gave a heuristic argument for a scaling law t
holds more generally and provided some numerical evide
for the existence of these different scaling regimes in t
dimensions. Qualitative features of the conjecture for sca
in two dimensions were confirmed by a numerical expe
ment.
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